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The casing of large electrical generators can be deformed slightly by the rotor's mag-
netic field. The sound emission produced by these periodic deformations, which could

possibly exceed guaranteed noise emission limits, is analysed analytically and numeri-

cally. From the deformation of the casing, the normal velocity of the generator*s surface

is computed. Taking into account the corresponding symmetry, an analytical solution
for the acoustic pressure outside the generator is found in terms of the Hankel func-
tion of second order. The normal velocity of the generator surface provides the required

boundary condition for the acoustic pressure and determines the magnitude of pressure
oscillations. For the numerical simulation, the nonlinear 2D Euler equations are formu-

lated in a perturbation form for low Mach number Computational Aeroacousties (CAA).
The spatial derivatives are discretized by the classical sixth-order central interior scheme
and a third-order boundary scheme. Spurious hlgh frequency oscillations are damped by

a characteristic-based artificial compression method (ACM) filter. The time derivatives

are approximated by the classical 4th-order Runge-Kutta method. The numerical results

are in excellent agreement with the analytical solution.

Introduction

For large air-cooled electrical generators, periodic
deformations of the generator casing are induced by
the rotor's magnetic field (Fig. 1). Finite element
based structural analysis suggests deformation ampli-
tt, des relative to the generator radius less than 10 -s m,
cf. AhrenQ . Albeit these deformations are quite

small, they are a source of sound. They could pos-
sibly exceed guaranteed noise emission limits. In this
note we present analytical and numerical solutions of
the sound pressure level resulting from rotor induced
casing deformations with given amplitude.
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Analytical Solution

To simplify the problem, we consider a generator
of infinite axial extent. The problem then reduces to
two dimensions (in the x, y or the r, ¢ plane, respec-

tively). The deformation of the casing induced by the
rotor's magnetic field provides a (velocity) boundary
condition for the acoustic field. Note that only the ve-

locity component normal to the surface of the casing is
relevant for the acoustic field. Therefore the acoustic

pressure distribution produced by the casing deforma-
tions is equivalent to that of a rotating ellipse (Fig.
2).

As a first step we determine the velocity of the sur-
face of the ellipse resulting from its rotation. Without
loss of generality, an ellipse oriented as shown in Fig.
2 at time t = 0 is considered. The points x_ on the
surface of the ellipse may be described by

( acosr )x, = b sin r '

where a,b are the seml-major and semi-minor axes,
respectively, and the parameter r runs from 0 to 2n.
We assume that the casing deformations are small in
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Fig. 1

of the casing follows the rotor's movement.

amplitude, and write

a = R(1 + e),

b = R0-e),

with e << 1. The following approximations are then

accurate to second order in E:

tan¢ _ (1-2e) tan%

r _ 0+esin2¢,

where O is the azimuth angle, as indicated in Fig. 2.

Using Taylor expansions and trigonometric identi-

ties, it is straightforward to show that at time t = 0

the surface of the ellipse is described by

x_(¢,t = 0) = R(1 +ecos20) sin_ +O(e2). (1)

At later times t, the surface vector x_ at angular po-

sition ¢ is equal to

xs(_,t) = _(f_t) x,(0- fit,t =0), (2)

where

Schematic of the casing deformation induced by the magnetic field of the rotor. The deformation

T4(8)= (cos0 -sin0)sin/9 cos 0

is the transformation matrix that rotates a vector by

an angle 0 about the origin in the (z, y) plane. Equa-

tion (2) expresses the fact that the ellipse rotates about

its center by an angle equal to fit during time t. Com-

bining (1) and (2), we obtain

x.(O,t) = R[1 +ecos2(O-fit)] (cos¢)sine 4- O(e2).

(a)
Differentiating with respect to time yields the velocity

v"(¢'t)=2_Rfisin2(O-P"t) ( c°s¢ ) +O(e2)"(4)sine

Note that as we consider the movement of points on

the ellipse's surface along a given direction ( we keep 0

fixed), the velocity vector v,(ff, t) is aligned with the

radial direction. As the ellipse's surface normal fi =

(cos ¢; sin ¢) + O(e) also points approximately in this

direction, we obtain for the surface normal velocity

v_ • fi(¢, t) _ v._,_(O,t) = 2eRfi sin2(¢ - _t) + O(e 2)

for the radial velocity component v,._. Introducing

the more convenient complex exponentials instead of

the sine function, where it is understood that physical

quantities are the real part of complex numbers, we

obtain

v,,_(cb, t) = -ieR _ e2iOe -i_' + O((2), (5)

where a = 2fi ha_ been introduced. V_'e find that

according to (3) and (5), each surface element of the

generator oscillates harmonically with amplitude eR

and a frequency oa, which is equal to twice the angular

frequency £t of the rotor.

Because the displacement of the generator surface

is small, it is appropriate to solve for the distribu-

tion of pressure disturbances outside a circular disk

Y

b

v

X

Fig. 2 Schematic and relevant notation of the

equivalent problem of a rotating ellipse.
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of radius R and enforce the boundary condition (5)

at r = R. The acoustic fluctuations of pressure p'

obey the Helmholtz equation, which reduces for the

harmonic case under consideration to

V 2 p' + k 2 p' = 0, (6)

with the wave number k = _/c (c is the speed of

sound). After separation of variables

pt(r, _) = o(r)CP(¢),

one obtains

10 (rOp'_ ( m 2 )o_ \ o_] + k2 - _ .o= o. (7)

Due to the angular dependence given by (5), ¢I,(¢) =

exp{2i¢} and m = 2. The general solution for the

radial function p(kr) is then (see Morse & Ingard, Sect.

7.3 2 )

p(kr) = AH(21)(kr). (8)

where H(m*) = Jm + into is the Hankel function of

rnth order (.l,,_ and N,, are Bessel and Neumann func-

tions, respectively), and ,4 is a constant which has to

be determined from boundary conditions. At the (im-

permeable) surface of the generator,

I

and the linearized form of the radial momentum equa-

tion
Ou'r Op'

P%-( = - o--7

yields then with (5) the relations required to fix the

constant A. We obtain the simple result

pe_ 2 R

A = ki1_.(kn), (9)

where """ denotes the derivative of a function with

respect to its argument.

The problem is non-dimensionalized conveniently

with the generator radius R, the speed of sound c and

the density p. The pressure fluctuations p' are non-

dimensionalized with pc 2. Introducing the Helmholtz

number 7-( = kR, we obtain finally

'_ H_(_) exp{9_i¢}. (10)
;_'(_, _) = H_,(n)

where the tilde indicates non-dimensionalized quanti-

ties. Numerical vahtes for the derivatives H2{1)'(z) =

iE2(z) exp{i%'2(z)} of the Hankel functions are given

in Table V of Morse and Ingard 2 or can be computed

with standard ntathematical software.

It h_ been shown by Miiller 3 that the normal veloc-

ity of the surface of an almost circular Kirchhoff vortex

is also described by (5). Hence the acoustic pres-

sure distribution (10) produced by a rotating ellipse

of small eccentricity is identical to that of a Kirchhoff

vortex of equal size, eccentricity and rotational speed.

Farfield and nearfield approximations of the pressure

distribution (10) are also presented in Mfiller 3 , and

it is pointed out that a farfleld approximation derived

using Green's function yields identical results.

However, for large electrical generators used in

power generation, typical Helmholtz numbers 7"t might

range from i to 5. With 7-I _ O(1), "small-source" or

"far-field" approx'imations are not applicable when the

pressure distribution in the vicinity of the generator
has to be determined.

Numerical Solution

We follow the approach outlined by Mfiller and

Yee 16 for the Kirchhoff vortex sound. Before the ap-

plication of the numerical scheme, we conditioned the

nonlinear 2D Euler equations by reformulating the

equations in a perturbation form for low Mach number

Computational Aeroacoustics(CAA), cf. Sesterhenn et

al. 4 . The unknowns are the changes of the conserva-

tive variables with respect to their stagnation values.

This fornmlation retains all nonlinearities and the con-

servation form, while numerical cancellation errors are

minimized compared to the original conservative laws.

The Euler equations in this perturbation form can be

written as

0p--+v.(pu), = 0, 01)
Ot

0(pu)'
--+v.(pu)'u'+Vp' = 0, 02)

Ot

O(pE)'
0---/-- + V-((pH)'u' + (pH)0u') = 0, (13)

where

P' = P - P0, (pu)' = pu, (pE)' = pE - (pE)o,

1 !

u' -- (pu)' p' = (3' - 1)[(pE)' - _(pu) -u'],
p0 + P"

(pH)' = (pC)' + p'.

Here, p denotes the density, u the velocity, E the to-

tal energy per unit mass, H tim total enthalpy, and

3' = 1.4 the ratio of specific heats for air at standard

conditions. The "t" and subscript "0" denote pertur-

bation and stagnation variables, respectively.

Although this perturbed form is identical to the

original conservation laws, discretizing e.g. Vp leads

to cancellation errors, whereas these errors are avoided

when discretizing Vp'. In Cartesian coordinates, the

perturbed 2D Euler equations can be expressed as

OU' OF', OF_

o--7-+ _ + 0y - o, (1_1)
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where

U !
(;_)' , (p,,)',,' + /
(m,), , F1 = (;n,)'u'
(pE)' (pH)'u' + (pH)ou'

), (#u)'v'
F2 = (pv)'v' + p'

(pH)'v' + (pH)ov'

Here, u' = u is the x-direction velocity and v' = v is

the y-direction velocity.

For the treatment of general geometries, a coor-

dinate transformation (x(_,,l),y(_,T])) is used. The

resulting transformed 2D Euler equations, transformed

variables and fluxes are

+ -_- +--_- : 0, (15)0----/- un

_' = j-I U',

= J _F1 + _,J 2,

F'2 = d-'q'_F'l + J-t%F'2,

with the Jacobian determinant of the transformation

j-1 = x_y,_ - xTty_, and the metric terms j-l_ = y,,

j-l_,j = -x,, j-1% = _y_, j-t% = x_.

Kreiss and Scherer s , Strand s and Carpenter et

al. T constructed high order difference operators Q for

"d/dx" such that the summation-by-parts (SBP) prin-

ciple holds, i.e.

(,,,Q.)h = ,,,v._v- .0_'0 - (e.,u)h, (16)

where u, v 6 R 'v+l, h is the uniform grid spacing and

N + 1 is the number of grid points. The discrete scalar

product and norm are defined by

(u,v),, = hurH,,, ll"]!_ = (u,u)h,

where H is a symmetric positive definite (N + 1) x

(N + l) matrix.

Vv'e employ a Q operator, which is third-order ac-

curate near the boundary and compatible with the

standard sixth-order central difference operator in the

interior. It w_ derived by Strand a and Q_, the x-

direction Q operator for _ is of the form

_]_k=o djkvk, j = O, ..., 5,

(Q_v)j = (Q}6)v)j, j = 6, ..., N - 6,

__ s}-_k=0 d,_-j.kv_v-k, j = N - 5,..., N,

(17)
where (Q_6)v)j 1,1 a 3 a= -_ ( "6"_Vj+3 -- _-_Vj+ 2 + iVj+t -- -_Vj_ l +

l
_60vj_: - g-6v,_3) is the standard sixth-order central

difference approximation of the first derivative. The

forms of the 5 x 9 matrix D = (djk) and matrix H

can be found in Strand 6 and Gerritsen and Olsson s .

Here H is a diagonal matrix defining the norm of the

Q operator. The global order of accuracy for (17) is

four. Since (17) is ba,sed on a diagonal norm, its ap-

plication to multi-dimensions is straightforward. The

metric terms are discretized by the same difference op-

erators a.s the flux derivatives in (15). In order to

guarantee freestream preservation in 3D for high or-

der spatial discretizations, the metric term treatment

of Vinokur and Yee II is recommended.

With the density, velocity and pressure non-

dimensionalized with reference quantities P0, co and

pock, respectively, the Riemann invariants can be ex-

pressed as p'- u,, p'- p', ut and p' + u,. Here,

u, is the normal velocity and ut is the tangential

velocity. At the generator, the in-going Riemann in-

variants are prescribed using the analytical solution

(10), cf. Miiller and Yee 16 . At the farfield, nonreflect-

ing boundary conditions are implemented by setting

the in-going Riemann invariants equal to zero cor-

responding to stagnation conditions. The outgoing

Riemann invariants are taken from the numerical solu-

tion computed at the boundary. We use the so-called

injection method to prescribe the in-going Riemann

invariants, i.e. by imposing them explicitly which

might destroy strict stability. Research is in progress

to implement the in-going Riemann invariants by the

penalty method called "simultaneous approximation

term" (SAT) of Carpenter et at. T or the projection

method of Olsson 12' 13 . Either approach yields strict

stability for a Q operator satisfying the SBP principle

(16) for linear problems. For nonlinear systems of con-

servation laws, the in-going Riemann invariants have

to be implemented by the SAT or projection method

via a split form of the inviscid flux derivatives 14' is (en-

tropy splitting l°) . This will be presented in Miiller
and Yee 2° .

The application of the spatial discretization of the

perturbed Euler equations in transformed coordinates

(15) results in a semi-discrete system of nonlinear
ODEs

dU

d-'T = R(U), (18)

where U is the vector of the difference approxima-

tions U_, k and R is the vector of two-dimensional

spatial difference operators operatirlg on _ and

with each element
' _ Jj.k

The periodic boundary conditions in the circumfer-

ential _/-direction in our application allow the use of

the standard sixth-order difference operator Q!6). The

ODE system (18) is solved by the 4th-order classical

Runge-Kutta method with a CFL condition of 1.783.

To minimize the lass of the global order of accuracy,

we impose the time-dependent physical boundary con-

ditions (the in-going Riemann invariants in our case)

only after the completion of the frill step of the Runge-
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Kutta method. The Q boundary difference operator is,

however, employed at every stage of the Runge-Kutta

method. Other remedies are discussed in 1T m

For long time wave propagation of nonlinear sys-

tems, even with the absence of shock waves and/or

steep gradients, spurious high frequency oscilla-

tions are generated by non-dissipative central spatial

schemes. To suppress these spurious oscillations, a

modified version of the Yee et ah 9 H high order ar-

tificial compressibility method (ACM) filter scheme

is used. The original ACM filter scheme involves

high order non-dissipative spatial base schemes and

a c4aracteristic-based ACM filter. The ACM filter

consists of a product of numerical dissipations and an

ACM sensor. The ACM sensor consists of a prod-

uct of a sensor coefficient and a gradient-like detector.

R_-lj+l/2,kt5 e U' k. DoU'j, k is defined analogously.

For our numerical experiments, selected nonzero pos-

itive ACM sensor coefficient ,_ less than or equal to
0.10 are evaluated.

Although Mfiller and Yee 2° performed numerical

studies on a similar almost circular Kirchhoff vortex

model, aside from application specific, the present

simulation differs from Muller and Yee in two ways.

The fourth-order classical Runge-Kutta temporal dis-

cretization and the full ACM sensor (_¢ and C¢) are

evaluated.

Numerical Results

We consider an elliptic generator casing with radius

R = 2m, • = 0.00125, fl = 82.5,_. The stagnation

conditions are p0 = 1.3 k_--g_,co = 330-_. Thus, the

Here, the limiter of the numerical dissipation, and the Helmholtz number becomes _ = kR = 2fiR�co = 1.

Roe's averaged states are not used. For low Mach The time step is chosen as At = 0.15. A polar grid

number CAA, the limiter which is designed for cap- mildly stretched near the generator casing in the radial
turing discontinuities might not be necessary, unless

shear layers, high gradient regions and/or boundary

layers are present.

At the completion of a full step of the Runge-Kutta

TT'_+I is filtered bymethod, the numerical solution _,.k

_-,+l Tr ''_+l -At Jj k [DeU' + DoU']_ +1 (19)j,k _ _j,k . , "

V fDe .7,k represents the fourth-order numerical dissipa-
tion in the _-direction defined'by

D_U'i, k = _6 e R_ C e IAe[6 _ R_16_ U},k

where 6¢ is the difference operator given by 6eU._,k =

U'j+I/2, _ -U'j_ l/2,k • Applying _e four times yields the

64U , =
standard central differenceapproximation _, j,k
U' - ' ' U'j+2.k 4Uj+l,k + 6Uj,k - 4 j-l,k + _3-2,k of

4 ocu ' x z__
A{ --_c( (3 _),y(kAtl),t). }tere DeU'j. k involves
differences of average states. The columns of R£ are

the right eigenvectors of the Jacobian matrix -_u and

may be found in Vinokur and Yee II . The eigenval-

ues of "_u define the diagonal matrix A_ = diag(u_ -

c e, u_, u_, u_ + c e) , where u e = u J-1(_ + v J-i_, and

c( = c_/(J-_(_) 2 + (J-_(,_)2. Instead of the Roe-

average, the R e and A_ are evaluated at the arithmetic

average. Here the ACM sensor is the product of a

sensor coefficient _ and a gradient-like detector. A

simplified form of the the gradient-like detector is ex-

pressed by the diagonal matrix C e. The lth diagonal

element c _ of C_ is defined by

cl _ ^i+_/2,a = max(03,a,0j+L_), (20)

II _._/_1-1 ___/_,_tt To avoid
^

where 8j,k = m_x(l_'_,_/_._l+l_'__,/_ _1,10-')"

an extra logical statement, the quantity 10 -7 is used

to avoid division by zero. c__ is the wavej+l/2,k
strength of the lth wave, i.e. the /th component of

direction, and uniform in the circumferential direction

of 129 x 24 is used. As presented later, a grid re-

finement study indicates that this grid is sufficient to

capture the flow physics accurately.

We consider the elliptic generator casing started in-

stantaneously. The initial conditions are p' = u' =

v' = p' = O, except for the circle r = R, where the

analytical solution is prescribed. At t = 30, the gen-

erator has rotated 7.5 radians. Figures 3 and 4 show

the numerical results without and with characteristic-

based filter, respectively. Without filter, the numerical

solution is polluted by spurious oscillations. These are

eliminated by the filter. The wave front started at

r = R at t = 0 has reached r _ 16 at t = 30. The

numerical solution with filter is compared with the an-

alytical solution along the positive x-axis at t = 30 in

Fig. 5. Between x = 1 and x _ 14, the analytical

and numerical solutions are in close agreement. At

x -_ 16, we see that in general the wavefront cannot

match the infinitely long rotating generator solution,

because the instantaneously started generator has zero

acoustic pressure downstream of the wavefront. The

discrepancies, therefore, have physical reasons.

At t = 75, the generator has rotated 18.75 radians.

Now, the wavefront is at r _ 38.5. If the wavefront

were reflected at the farfield r = 32.1875, we should

see it at r _ 25.875. The computed acoustic pressure

along the positive x-axis shown in Fig. 6 is in ex-

cellent agreement with the analytical solution, if the

characteristic-based ACM filter with a uniform sen-

sor coefficient n = 0.05 is used. Without the filter,

spurious oscillations occur. The wavefront generated

at t = 0 by the elliptic generator casing has passed

through the farfield without visible reflection. The

quadrupole structure of the acoustic pressure is cor-

rectly recovered by the high order Q operator with

the characteristic-based ACM filter of _ = 0.05. See

Figs. 7 and 8 for the comparison.
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Fig. 3 Computed acoustic pressure contours with-
out filter for instantaneously started generator
with 7-/= 1, e = 0.00125, rotated angle = 7.5tad.

Fig. 5 Comparison of acoustic pressure for instan-
taneously started generator with T/= 1, • = 0.00125,

rotated angle = 7.5rad.
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Fig. 4 Computed acoustic pressure contours with

filter (g = 0.05) for instantaneously started genera-
tor with T/= 1, • -- 0.00125, rotated angle = 7.5rad.

Fig. 6 Comparison of acoustic pressure for instan-

taneously started generator with _ = I, • = 0.00125,

rotated angle = 18.75tad.

We note that the multistage method used in Miiller

and Yee 16 for time integration yields almost identical

results as the classical Runge-Kutta method employed

here. Since both ODE solvers coincide for linear prob-

lems and we are solving essentially a linear problem, it

is not surprising that the results with the two different

time integrations differ 3 to 4 orders of magnitude less

from each other than from the analytical solution.

A grid refinement study was performed with 65 x 15,

129 x 24 and 257 x 42 grids keeping the CFL num-

ber constant. The maximum CFL numbers in the

radial and circumferential directions were about 1 and

0.2, respectively. The high order Q operator with

the characteristic-based ACM filter of a = 0.05 was

used. The computed acoustic pressure along the pos-

itive x-axis after time t = 75 in Fig. 9 indicates grid

convergence. The/2-norm of the error of p' along the

positive x-axis, i.e. the deviation of the computed from

the analytical acoustic pressure there, has a conver-

gence rate of 4.7 from the course to the medium grid

and of 1.9 from the medium to the fine grid. The error

ofp' along the positive x-axis is shown in Fig. 10. The

reduction in convergence rate seems to be due to the

boundary treatment, because the error is largest near

the boundaries. A similar drop of convergence rate

is observed for the conservative variables in the whole

domain as well.

The influence of the gradient-like detector of the

ACM sensor and its sensor coefficient _ is investigated.

VVe consider the 129 × 24 grid for the same test case

as above. This test case consists of smooth flow and it

is not a very long time wave propagation simulation,

consequently, only a small sensor coefficient is needed.

With a small sensor coefficient, the role of the gradi-

ent detector is diminishing. This is due to the fact

that the gradient-like detector is designed to minimize
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Fig. 7 Acoustic pressure contours with filter

(g = 0.05) for instantaneously started generator
with 7-I = 1, e = 0.00125, rotated angle = 18.75rad.

Fig. 9 Grid refinement study of acoustic pressure
for instantaneously started generator with 7-/ = 1,

= 0.00125, rotated angle = 18.75tad.
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m 2S7,42gnd

P

5 _0 _S 2O 2'5 30 3_

Fig. 8 Exact acoustic pressure contours for gen-

erator with 7-I = 1, e = 0.00125, rotated angle
= 18.75rad.

numerical dissipation away from shocks, shears, high

gradient and steep boundary-layer flows with the use

of a larger sensor coefficient. However, for very long

time wave propagation problems and/or with unknown

sohltion behavior, the full ACM sensor or wavelet sen-

sor (cf. Sj6green and Yee 2]) is necessary, even for

low Mach number CAA (cf. Yee et al._°). As ex-

pected, the difference in results with and without the

gradient-like detector (C_ of (20) vs. C_ -- l) are not

pronounced for the very small sensor coefficients stud-

led. For _ = 0.025, the error of the acoustic pressure

is rougher with the gradient detector than without,

cf. Fig. 11. For n = 0.05, the error of the acous-

tic pressure with the gradient detector and without

behave similarIy. However, for n = 0.1, the error of

the acoustic pressure is larger without the gradient

detector than with the detector, cf. Fig. 12. In this

case, the gradient-like detector is performing its duty

Fig. 10 Grid refinement study of error in acoustic

pressure for instantaneously started generator with

7-/= 1, _ = 0.00125, rotated angle = 18.75rad.

to minimize the use of numerical dissipation where it

is not needed (in this case, away from spurious oscil-

lations). Thus, the results seem to be less sensitive

to the filter coefficient _, when the gradient detector

switch is used.

The result of Yee et al. _° indicated that the use

of entropy splitting of the inviscid flux derivative can

minimize the use of numerical dissipation. For the

present model problem, a similar conclusion as Yee et

al. can be drawn. With entropy splitting, we can ob-

tain reasonable results even without filter. Figures 13

and 14 compare the results without and with entropy

splitting for p' along the positive x-axis. The improve-

ment with entropy splitting is clearly visible. More

results and the fornmlation of the entropy splitting

for low Mach number aeroacoustics will be reported in
Mfiller and Yee _° .
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Fig. 11 Influence of the ACM sensor with s = 0.025

on error of acoustic pressure for instantaneously

started generator with 7-/ = 1, • = 0.00125, rotated

angle = 18.75rad.
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Fig. 12 Influence of the ACM sensor with _ = 0.1

on error of acoustic pressure for instantaneously

started generator with 7_ = 1, • = 0.00125, rotated

angle = 18.75tad.

Conclusions

The periodic deformation of electrical generators by

the rotors' magnetic fields is modelled as a rotating

ellipse. The normal velocity of the elliptic genera-

tor surface provides the boundary condition for the

acoustic field. For an almost circular generator sur-

face, the HelmhoItz equation governing the acoustic

pressure is solved analytically in terms of the Hankel

function of second order. Thus, the sound emission of

rotor induced deformations of generator casings can be

described analytically. The resulting model problem

provides a good test case for the evaluation of CAA

numerical algorithms.

Although the mLmerical simulation of the resulting
almost circular Kirchhoff vortex model is similar to the

study in Mfiller and Yee, IG a different form of the filter

Fig. 13 Influence of no entropy splitting on acous-

tic pressure for instantaneously started generator

with _ = 1, • = 0.00125, rotated angle = 18.75tad.

2

1

i
°i

-- exac_

-8 O 5 I0 15 20 25 3O 3S

Fig. 14 Influence of entropy splitting on acoustic

pressure for instantaneously started generator with

= l, • = 0.00125, rotated angle = 18.75tad.

and temporal discretization are evaluated, and grid re-

finement study is also included. Results reveal a very

accurate simulation with a fairly coarse grid for yet an-

other important CAA physical application. For CAA

flow problems of this type, especially for long time

wave propagations, appropriate filter applied to the

entropy splitting perturbation form of the Euler equa-

tions is essential to achieve stability and high accuracy

of high order non-dissipative spatial base schemes.
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